An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions.

نویسندگان

  • Mark J Rivard
  • Christopher S Melhus
  • Domingo Granero
  • Jose Perez-Calatayud
  • Facundo Ballester
چکیده

Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributions from complex brachytherapy source configurations determined with Monte Carlo methods were used as input data. These source distributions included the 2 and 3 cm diameter Valencia skin applicators from Nucletron, 4-8 cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy, and a 16 mm COMS-based eye plaque using 103Pd, 125I, and 131Cs seeds. Radial dose functions and 2D anisotropy functions were obtained by positioning the coordinate system origin along the dose distribution cylindrical axis of symmetry. Origin:tissue distance and active length were chosen to minimize TPS interpolation errors. Dosimetry parameters were entered into the PINNACLE TPS, and dose distributions were subsequently calculated and compared to the original Monte Carlo-derived dose distributions. The new planning technique was able to reproduce brachytherapy dose distributions for all three applicator types, producing dosimetric agreement typically within 2% when compared with Monte Carlo-derived dose distributions. Agreement between Monte Carlo-derived and planned dose distributions improved as the spatial resolution of the fitted dosimetry parameters improved. For agreement within 5% throughout the clinical volume, spatial resolution of dosimetry parameter data < or = 0.1 cm was required, and the virtual brachytherapy source data set included over 5000 data points. On the other hand, the lack of consideration for applicator heterogeneity effect caused conventional dose overestimates exceeding an order of magnitude in regions of clinical interest. This approach is rationalized by the improved dose estimates. In conclusion, a new technique was developed to incorporate complex Monte Carlo-based brachytherapy dose distributions into conventional TPS. These results are generalizable to other brachytherapy source types and other TPS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages ...

متن کامل

Radial dose functions of GZP6 intracavitary brachytherapy 60Co sources: treatment planning system versus Monte Carlo calculations

Background: The Monte Carlo (MC) method is not only used for dose calculations around brachytherapy sources but also for benchmarking treatment planning systems (TPS) calculations. Materials and Methods: Three 60Co sources of GZP6 brachytherapy unit were simulated using MCNP4C MC Code. The radial dose functions were calculated by MC method and GZP6 TPS and were compared. Results: There was a go...

متن کامل

Monte Carlo investigation on precise dosimetry of HDR breast brachytherapy with Accuboost

Introduction: Accuboost is a HDR brachytherapy system in early stages breast cancer treatment. This device provides a completely noninvasive procedure with parallel-opposed radiation from two immobilizing peripheral applicators that caused it a preferred option of modalities to choose. In most commercial treatment planning systems, tissues are considered as a simple water phan...

متن کامل

A New Approach for Heterogeneity Corrections for Cs-137 Brachytherapy Sources

Background: Most of the current brachytherapy treatment planning systems (TPS) use the TG-43U1 recommendations for dosimetry in water phantom, not considering the heterogeneity effects.Objective: The purpose of this study is developing a method for obtaining correction factors for heterogeneity for Cs-137 brachytherapy sources based on pre-calculated MC simulations and interpolation.Method: To ...

متن کامل

A study on dosimetry accuracy of Strut-Adjust Volume Implant (SAVI) brachytherapy

Introduction: Accelerated Partial Breast Irradiation (APBI) is an effective treatment for breast carcinomas because of its limited number of fractions. Strut-adjusted volume implant (SAVI) is a HDR brachytherapy applicator to deliver the prescription dose with good PTV coverage and acceptable dose to skin, chest wall and organ at risks. Acceptable clinical outcomes depend on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2009